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Abstract: Digestive proteases from marine organisms have been poorly applied to 
biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted 
or temperate fish and crustacean species. These enzymes are more efficient than enzymes 
from microorganism and higher vertebrates that have been used traditionally. However, 
the biomedical potential of digestive proteases from warm environment species has 
received less research attention. This review aims to provide an overview of this unrealised 
biomedical potential, using the debridement application as a paradigm. Debridement is 
intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and 
is a key step in wound treatment. We discuss the physiological role of enzymes in wound 
healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted 
enzymes such as their poor thermal stability. We show that digestive proteases from 
tropical crustaceans may have advantages over their cold-adapted counterparts for this and 
similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to 
proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour 
of the source organism may direct the evaluation of enzymes for particular applications, as 
digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, 
and environmental conditions. We encourage more research on the biomedical application 
of digestive enzymes from tropical marine crustaceans.

Keywords: Crustaceans, Proteases, Thermal Stability, Tropical Species, Trypsin, 
Debridement
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INTRODUCTION

Given their high enzyme diversity and the feasibility of large-scale fermentation, 
marine microorganisms are widely used in the exploration of enzyme resources 
for biotechnological applications (Wang et al. 2016; Lam et al. 2018) as well 
as in the food industry (Fernandes 2014; Maruthiah et al. 2016). In particular, 
microorganisms from extreme environments have been receiving increased 
attention because of the molecular features of their enzymes, which result in 
high catalytic activity around the boiling and freezing points of water and extreme 
pH values (Antranikian et al. 2005). Proteases are the largest group of industrial 
enzymes and have a variety of applications ranging from use in detergents, leather 
preparation and food processing. During the last decade, marine proteases of 
non-microbial origin have been assessed for different applications, such as the 
use of fish (Klomklao 2008; Shahidi & Kamil 2001; Jesus de la Cruz et al. 2018) 
and crustacean (Rossano et al. 2011) digestive proteases in the food industry. 
Conversely, digestive proteases from marine organisms have been less applied to 
the biomedical field.

Proteases in general are not ideal therapeutic agents; they must remain 
active under optimal conditions in the site of action for a period long enough to 
ensure adequate pharmacokinetics. Furthermore, proteases can denature, are 
prone to proteolytic processing, and are susceptible to inhibitors. Another drawback 
of proteases is their poor cell permeability, thus they cannot reach intracellular 
targets and are not suited for oral administration, unless intended to act on the 
gastro-intestinal tract (Aehle 2004). However, there are areas where the use of 
proteases can be employed successfully such as in topical treatments.

Proteases from a wide variety of marine organisms have been extensively 
studied in the context of digestion physiology, ecology and aquaculture. In contrast, 
only a few of these proteases have shown biomedical potential. Trypsin from 
Atlantic cod (Gadus morhua) has antipathogenic properties due to its ability to 
cleave proteins from viruses and bacteria and has proven to be effective in wound 
healing (Gudmundsdóttir et al. 2013; Jesus de la Cruz et al. 2018). Enzymes from 
some crustaceans have also been evaluated for wound healing (Glyantsev et al. 
1997; Kristjansdottir & Gudmundsdottir 2000). Typically, these enzymes come 
from cold-adapted or temperate species and the biomedical potential of their 
counterparts from warm environments have received less research attention. 
Digestive proteases are extremely diverse in both herbivorous and carnivorous 
marine organisms, and have evolved to cope with a wide variety of dietary habits 
including detritus feeders and different kinds of scavengers. Therefore, there is 
still much to learn regarding  the richness of digestive enzyme functionalities that 
occurs in marine organisms with wide-ranging feeding habits and temperature 
preferences. 

This review aims to provide an overview of the unrealised biomedical 
potential of digestive proteases from marine tropical crustaceans using the 
debridement application as a paradigm. We discussed different approaches for 
debridement, the physiological role of enzymes in wound healing, the use of 



Tropical Crustacean’s Proteases Applications

189

exogenous enzymes in debridement, and current limitations in the use of cold-
adapted enzymes. We show that digestive proteases from tropical crustaceans 
may have advantages over their cold-adapted and temperate counterparts for 
these processes and for other biomedical applications as well. 

DEBRIDEMENT AS A CASE IN POINT

Debridement

Cutaneous wound healing has been a heated topic in recent decades and has 
prompted the development of various therapeutic approaches (Zeng et al. 2018). 
Clinical experience strongly supports that debridement is a necessary component 
of wound bed preparation in chronic or hard-to-heal wounds (McCallon et al. 
2014). Debridement is a technique aimed at removing nonviable, necrotic and 
contaminated tissue, until surrounding healthy tissue is exposed. Debridement 
enables the true extent of the wound to be understood, allows drainage of 
exudates and removal of dead tissue, enables a deep swab to be taken for culture 
and in general, encourages healing (Edmonds & Foster 2000; McCallon et al. 
2014). Others have suggested that the main reason for debriding a wound is to 
avoid substratum for bacterial growth (Nano et al. 1996). Different approaches 
are currently available for debridement such as autolysis, surgical intervention, 
mechanical methods, biosurgery and enzymatic approaches (Gottrup 2010; 
Ramundo & Gray 2008; Zeng et al. 2018). 

The common practice in wound healing includes initial and ongoing surgical 
or sharp debridements to remove nonviable tissue, daily saline dressing changes, 
off loading of pressure and systematic control of infection (Eneroth & van Houtum 
2008). Low-frequency ultrasound has been tested as an alternative to surgical 
wound debridement (Herberger et al. 2011). Another mechanical method is called 
“wet-to-dry” in which the wound is soaked in saline to moisten hard material before 
the application of a moist gauze pad over the affected area. When the dressing 
is changed, the attached devitalised tissue is pulled free. Unlike a cloth, some 
materials such as monofilament polyester fibres are able to integrate devitalised 
tissue and debris within their structure (Bahr et al. 2010). Both sharp and wet-
to-dry debridements are inexpensive but may remove granulating tissue and are 
painful for the patient. 

Nonsurgical methods of debridement have received attention during the 
recent, as they promote the body’s own immune system to break down and digest 
necrotic debris (i.e. autolytic debridement) (McCallon et al. 2014). These methods 
involve the use of moisture dressings. In general, wound dressing provides wound 
protection, remove excess exudates its may have anti-microbial properties, have 
high permeability to oxygen, and are easily removed from the wound site (Zeng et 
al. 2018). There have been some experiments with polysaccharide beads, which 
are highly hydrophilic and rapidly absorb exudate from the necrotic sloughy mass. 
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Hydrogels have proven to be more effective (Eneroth & van Houtum 2008; Edwards 
& Stapley 2010) and are now recognised as a standard treatment for necrotic wounds 
(Edwards 2010). Hydrogel compositions vary from sodium carboxymethylcellulose 
aqueous based-gel (D’Hemecourt 1998) and hydrogel wound dressings (Dumville 
et al. 2013) to immunomodulating hydrogel with bacteriostatic agents (Dumville et 
al. 2017). New materials for wound dressings are continuously being developed 
and include protein-based dressings (Vasconcelos & Cavaco-Paulo 2011), or the 
combination of natural origin components with nanostructured materials (Andreu 
et al. 2015). In general, all these are gentle debriders as they keep the affected 
area moist so that natural enzymatic reactions can take place (Edwards, 2010; 
Zeng et al. 2018) though they are slow, require multiple dressing applications, and 
may not be effective for patients with compromised immune system (McCallon et 
al. 2014). 

Enzymes in Debridement

It is known that wound debridement requires multiple proteinase specificities 
to degrade the eschar and that these enzymes are supplied by inflammatory 
leucocytes infiltrating the eschar from the wound bed (Thomas et al. 1999). Re-
epithelialisation is also dependent on the activity of different proteolytic enzymes. 
During the initial re-epithelialisation of cutaneous wounds, the migrating epidermis 
reaches the granulation tissue and then dissects the fibrin clot from viable tissue 
(Clark 1997; Kubo et al. 2001). This process is partially mediated by fibrinolytic 
activity necessary for the wound epidermis to cleave fibrin from its migratory 
pathway (Rømer et al. 1996) and metalloproteinases that are important for 
keratinocyte penetration under the fibrin clot (Saarialho-Kere et al. 1993: 1994). 
Trypsin activity is known to favour fibrocyte differentiation, while proteases with 
other specificities such as pepsin, endoprotease GluC, and chymotrypsin do not 
promote this process (White et al. 2013). Matrix metalloproteinases are also crucial 
in the synthesis, degradation, cross-linking, and reorientation (i.e. remodeling) of 
collagen during the last stages of healing (Satish & Kathju 2010; Robichaud et 
al. 2011). Thus, natural debridement and subsequent re-epithelialisation can be 
referred to as enzymatic processes.

One method of debridement is the use of the insect maggot (Lucilia 
sericata), referred to as larval therapy or biologic debridement. In this process, 
the maggot breaks down biofilms of various bacteria and their actions seem 
to be limited to the necrotic wound while sparing the healthy tissue, thus it is a 
selective method. This method was widely practiced in the past and is now 
gaining renewed attention (Eneroth & van Houtum 2008; Gottrup & Jørgensen 
2011). There is now strong evidence for the biochemical mechanisms underlying 
the success of this method (Smith et al. 2006). Maggot excretions and secretions 
contain allantoin, sulfhydryl radicals, calcium, cysteine, glutathione, embryonic 
growth stimulating substance, growth stimulating factors for fibroblasts, 
carboxypeptidases A and B, leucine aminopeptidase, collagenase, and proteases 
(trypsin, chymotrypsin, metalloproteinase and aspartyl proteinase) (Gupta 2008). 
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These maggot proteinases hydrolyse fibrin clots, and its chymotrypsin-like fraction 
degrades extracellular matrix components such as fibronectin, laminin and acid-
solubilised collagen types I and III (Chambers et al. 2003). Due to the relevance 
of chymotrypsin activity for maggot debridement, a chymotrypsin I from maggot 
was manufactured as a recombinant enzyme and proved to digest chronic wound 
eschar ex vivo (Telford et al. 2011). Although this chymotrypsin was inhibited by 
alpha-2-macroglobulin, it was unaffected by main inhibitors in wound eschar (alpha-
1-antichymotrypsin and alpha-1-antitrypsin), which is different from the effect 
of these inhibitors on the mammalian equivalent, alpha-chymotrypsin. Maggot 
chymotrypsin proved to cleave the major proteins from slough/eschar from venous 
leg ulcers better than chymotrypsins from human and bovine sources (Telford 
et al. 2010). Other reports support that maggot secretions also stimulate wound 
healing by promoting different cellular processes such as activation of fibroblast 
migration, angiogenesis, and production of growth factors within the wound 
(Nigam & Morgan 2016). The secretions of other insects have also been evaluated 
as debriders; secretions from the larvae of the blowfly Calliphora erythrocephala 
digested experimental rat skin burn eschar in vivo and in vitro. Interestingly, there 
was no evidence of chymotrypsin, elastase, or collagenase in these secretions but 
enzymes with trypsin, leucine aminopeptidase, and carboxypeptidases A and B 
activities were found (Vistnes et al. 1981). 

Some methods use enzymes directly over the wound and are known as 
enzymatic debridement (Carson et al. 2003; Hwang & Ivy 2006; Ramundo & Gray 
2009). Although the clinical experience suggests that combined therapy (e.g. initial 
surgical debridement followed by serial enzymatic debridements) is effective for 
many patients with chronic, indolent, or nonhealing wounds, enzymes may be 
used as the primary technique in certain cases when surgical debridement is not a 
good option due to bleeding disorders (Ramundo & Gray 2008), diabetes mellitus 
(Edwards & Stapley 2010), or complicated anatomy in the case of deeply burned 
hands (Krieger et al. 2011). Enzymatic debridement such as collagenase ointment 
and papain-urea-based ointment are more effective for debridement of necrotic 
tissue from pressure ulcers, leg ulcers, and partial-thickness burn wounds, than 
standard methods (Marazzi et al. 2006, Ramundo & Gray 2009; Shi & Carson 
2009; Shi et al. 2010; Patry & Blanchette 2017). Collagenase (i.e. Clostridium 
collagenase) exhibits activity in the pH range found in most chronic wounds (Shi et 
al. 2011) and achieves selective debridement by digesting denatured collagen in 
eschar while sparing non-necrotic tissues (Shi & Carson 2009). Also, a formulation 
containing streptokinase and streptodornase digests fibrin, collagen and elastin, 
which are found in the necrotic exudates of wounds. Vibriolysin, a proteolytic 
enzyme secreted by the marine microorganism Vibrio proteolyticus has been 
evaluated in vitro as an enzymatic debridement agent to successfully hydrolyse 
proteinaceous components of eschar (e.g. fibrin, elastin, collagen) (Durham et al. 
1993). Also, a bromelain-based preparation decreased the wound area and skin-
graft use (Krieger et al. 2011) and accelerated re-epithelialisation as well (Singer 
et al. 2011). Bromelain is a mixture of enzymes such as phosphatase, glucosidase, 
peroxidase, cellulase and escharase, from the fruit or stem of pineapple (Pavan 
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et al. 2012). In deep burned hands, the use of the bromelain-based NexoBrid® 

is promising regarding handling and duration of the treatment, efficiency and 
selectivity of debridement, healing potential and early rehabilitation (Schulz et al. 
2017). Other enzyme formulations have also been applied commercially to the 
debridement of ulcers including bovine trypsin, bovine or human plasmin, and 
subtilisin (Aehle 2004; McCallon et al. 2014). Some of these enzymes have also 
been tested in combination with antimicrobial dressings (Shi et al. 2010). From 
these methods, collagenase treatment is one of the most commonly used method 
in clinical practice in conjunction with topical antibiotics. However, available clinical 
trials present a high risk of bias and more research and adequate reporting of 
adverse events has been warranted (Patry & Blanchette 2017).

CRUSTACEAN PROTEASES AND THEIR DEBRIDEMENT POTENTIAL

Proteases from Cold-adapted Crustacean Species

Marine enzymes evaluated for debridement applications are from cold-adapted 
species (Fornbacke & Clarsund 2013). Enzyme mixtures from krill (a small 
crustacean from cold waters) were tested and proved to be more active than other 
commonly available proteases used for wound debridement (Mekkes et al. 1997; 
Mekkes et al. 1998; Hellgren et al. 1986; Anheller et al. 1989; Campell et al. 1987; 
Westerhof et al. 1990; Hellgren et al. 1991). The predominant activity in the protease 
extract from krill is trypsin-like activity associated with three serine proteinases, in 
addition to two carboxypeptidases, A and B (Anheller et al. 1989). There are also 
some krill enzymes with wide specificity (crustacean serine collagenolytic enzymes 
or brachyurins Ia). Type Ia brachyurins possess trypsin-, chymotrypsin- and 
elastase-like activities in addition to their ability to hydrolyse collagen (Barret et al. 
1998). These cold-adapted enzymes have low activation energy and high catalytic 
efficiency (kcat/Km). The structural features of trypsins and other enzymes from 
cold-adapted organisms, including non-crustacean species, determining their high 
catalytic efficiency have been discussed extensively (Adekoya et al. 2006; Papaleo 
et al. 2008). An increased structural flexibility is thought to reduce the activation 
energy necessary for generating reaction intermediates, resulting in a more 
efficient substrate turnover, although differences in catalytic efficiency between 
bovine and cold-adapted salmon trypsins are thought to result from differences in 
Km (Sekizaki et al. 2000), probably due to variation in the electrostatic potential 
of the S1-binding pocket (Gorfe et al. 2000). One of the krill enzymes, referred 
to as euphauserase, has been produced recombinantly in P. pastoris for use in 
debridement (Kristjansdottir & Gudmundsdottir 2000). Similar efforts were made 
with cold-adapted cod trypsin. A clinical study using an hydrogel formulation 
containing cod trypsin on pressure wounds revealed that it was of superior 
efficacy for wound healing compared to conventional treatments (Mangioli 2004). 
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In addition to its role in debridement, cod trypsin exhibits anti-pathogenic effects 
(Gudmundsdóttir et al. 2013). 

However, one limitation for the use of cold-adapted enzymes is their 
poor thermal stability. The activity of cod trypsin is maintained for longer periods 
at 15oC than at higher temperatures (Stefansson et al. 2010). Another feature 
of this enzyme (and that from krill) is its susceptibility to autolysis, with several 
autolytic cleavage sites (Stefansson et al. 2010). It has been proposed that the 
thermal inactivation of cod trypsin, involving unfolding and autolysis, limits the 
lifespan of the enzyme in the wound bed, and may decrease the risk of harm the 
viable tissue (Gudmundsdóttir et al. 2013). However, efforts have been made to 
increase thermal stability of both cod trypsin (Gudmundsdóttir & Pálsdóttir 2005) 
and krill euphauserase (Benjamin et al. 2001; Gudmundsdóttir & Pálsdóttir 2005) 
by site directed mutagenesis, and by covalent chemical modification with oxidised 
sucrose polymer in the case of the cod enzyme (Venkatesh et al. 2005). However, 
thermal stability for the krill enzyme only increases from 35oC to 40oC after site 
directed mutagenesis (Benjamin et al. 2001). In spite of this, it was considered that 
the best resulting mutant was the one that combines a long lasting high proteolytic 
activity (one single mutation provided around 25 times more proteolytic stability) 
with thermal instability, because the latter allows a tighter control of the enzymatic 
activity during biomedical application (Olivera-Nappa et al. 2013). However, others 
have proposed that the thermal instability of cold-adapted trypsins represents a 
drawback for their practical use, taking also into consideration the prospects for 
its production (de la Cruz et al. 2018). In the case of the krill enzyme, an analysis 
of a structural model suggested that two residues of loop D (analogous to the 
autolysis loop of trypsins) might be targets for autolysis and thus, changes were 
incorporated at these positions; the mutant was more stable against autolysis 
than the wild-type form of the enzyme during the production of the recombinant 
(Gudmundsdóttir & Pálsdóttir 2005). 

Wide specificity proteases from other crustaceans have been also 
evaluated as debrider agents. It was reported that the red king crab (Paralithodes 
camtschaticus) collagenase has higher proteolytic activity toward fibrin clot and 
necrotic eschar in vitro than four enzyme preparations (trypsin/chymotrypsin, 
and proteases isolated from Aspergillus terricola, Carica papaya and 
pseudomonodaceae), and it was tested successfully in a small clinical trial with 
patients with leg ulcers (Glyantsev et al. 1997). This enzyme is also cold-adapted, 
thus its stability is affected by high temperatures. In addition, many cold-adapted 
proteolytic enzymes are negatively affected in acid media (Gudmundsdóttir & 
Pálsdóttir 2005).

Proteases from Tropical versus Temperate Crustacean Species 

Enzymes of organisms from warm environments are often more thermally resistant 
than cold-adapted enzymes (Table 1). This is thought to results from stronger 
hydrophobic interactions at the inner protein structure and, in some cases, 
because of differences in the number of disulfide bridges. Cold-zone fish trypsins 
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have lower thermal stabilities, in general less than 30°C–40°C, than temperate 
and tropical fish trypsins (Kishimura et al. 2010). Clear examples for this trend also 
arise when comparing enzymes from similar crustaceans, even from the same 
genus, but adapted to different environmental temperature. We have studied 
trypsins isoenzymes from the tropical lobster Panulirus argus. The molecular 
masses of lobster trypsins range from 35 to 36 kDa. All enzymes have restricted 
trypsin activity and show the distinctive trypsin preference for Arg over Lys in the 
P1 position. Optimal pH for most isoforms ranges from 7 to 8, although one trypsin 
exhibits maximum activity at pH 6–6.5, and this same isoenzyme has double 
the activity of the other isoforms at pH 5 (Perera et al. 2012). While all P. argus 
trypsins are less efficient than those present in some fish (e.g., Engraulis japonicus, 
Ahsan & Watabe 2001; Oncorhynchus keta, Toyota et al. 2007) and cold-adapted 
crustaceans (e.g., Euphausia pacifica, Wu et al. 2008), they are more efficient 
than bovine trypsin (Rascón et al. 2011). The tropical lobster trypsins were stable 
at 55°C for at least 60 min and the same was observed for chymotrypsin (Perera 
et al. 2012). Conversely, a chymotrypsin from the gastric juice of a temperate 
lobster from the same genus, Panulirus interrutpus, is inactivated after 20 min 
at the same temperature (Bibo-Verdugo et al. 2015). The chymotrypsin from  
P. interruptus showed collagenase activity because it presents the same residues 
in the S1 binding pocket, as does the brachyurin from Uca pugilator (Bibo-Verdugo 
et al. 2015). The same is likely to be true for chymotrypsin from the tropical lobster 
P. argus although functional data are not available.

A trypsin-like enzyme from the blue swimmer crab (Portunus pelagicus), 
adapted to high temperatures, shows only 50% inactivation at 68°C (Dionysius et al. 
1993). Conversely, in the temperate crab species Cancer pagurus, trypsin activity 
decreased to 30% at 50oC, losing the activity after 10 min at 60oC (Saborowski 
et al. 2004). Although chymotrypsin in this species was more heat resistant than 
trypsin, the activity decreased towards 60% of the initial value at 50oC (Saborowski 
et al. 2004). Trypsins from two hermit crabs, the temperate Pagurus bernhardus 
and the tropical Clibanarius striolatus, also differed in their thermal stability (Dittrich 
1992). At 50oC, the protease from the tropical crab does not lose any activity after 
120 min whereas after this period, only 9% residual activity was found for the 
enzyme from the temperate species (Dittrich 1992). At the same temperature, 
proteases from the gastric juice of another temperate crab, Cancer pagurus, 
show reduced activity by about 60% (trypsin) and 40% (chymotrypsin) in 60 min 
(Saborowski et al. 2004). Another study revealed that digestive alkaline proteases 
of two cold-water species, the Chilean rock crab (Cancer edwardsii) and the 
southern king crab (Lithodes santolla), completely lost their activity after 20 min at 
60°C (Bañuelos-Vargas et al. 2018). Conversely, recent studies have shown that 
trypsin and chymotrypsin activities from a related species, the tropical king crab 
Maguimithrax spinosissimus, remain above 80% after 60 min at 40oC (Rodríguez-
Viera et al. unpublished). 
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Table 1: Thermal properties of crustacean trypsins. 

Species Climate 
zones

Optimum 
temperature 

(°C)

Thermal 
stability (°C) References

Panulirus argus (Lobster) Tropical 60 55 Perera et al. (2012)

Thenus orientalis (Lobster) – – Johnston et al. 
(1995)

Fenneropenaeus indicus 
(Shrimp)

45 35–40 Honjo et al. (1990)

Litopenaeus vannamei 
(Shrimp)

60a 60b a Sainz et al. (2004)
b Senphan et al. 

(2015)

Penaeus monodon (Shrimp) 55–65 50 Jiang et al. (1991)

Callinectes bellicosus (Crab) 50 40–50 Díaz-Tenorio et al. 
(2006)

Callinectes arcuatus (Crab) 50 40–50 Díaz-Tenorio et al. 
(2006)

Callinectes sapidus (Crab) 70 50 Dendinger & 
O`Connor (1990)

Portunus pelagicus (Crab) 60 65 Dionysius et al. 
(1993)

Scylla serrata (Crab) 40 60 Serrano (2015)

Maguimithrax spinosissimus 
(Crab)

60 40 Rodríguez-Viera et 
al. (unpublished)

Clibanarius striolatus (Hermit 
crab)

50 50 Dittrich (1992)

Macrobrachium rosenbergii 
(Crayfish)

55 40 Sriket et al. (2012)

Macrobrachium amazonicum 65 55 da Silva Santos et al. 
(2014)

Tisbe biminiensis (Copepod) 55 50 França et al. (2010)

Farfantepenaus paulensis 
(Shrimp)

Subtropical 45 40 Buarque et al. (2009)

Procambarus clarkia 
(Crayfish)

55a

45b
45a

45b

a Kim et al. (1992)
b Guizani et al. 

(1992)
(continued on next page)
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Species Climate 
zones

Optimum 
temperature 

(°C)

Thermal 
stability (°C) References

Panulirus interruptus (total 
alkaline protease) (Lobster)

Subtropical/
Temperate

50 40 Celis-Guerrero et al. 
(2004)

Pagurus bernhardus (Hermit 
crab)

45 40 Dittrich (1992)

Lithodes santolla (total 
alkaline protease) (Crab)

60 15 Bañuelos-Vargas et 
al. (2018)

Cancer edwardsii (Crab) 60 45 Bañuelos-Vargas et 
al. (2018)

Cyrtograpsus angulatus 
(Crab)

Temperate 45 – Michiels et al. (2017)

Cancer pagurus (Crab) – 30 Saborowski et al. 
(2004)

Paralithodes camtschaticus 
(Crab)

Temperate/
Polar

55 – Rudenskaya et al. 
(1998)

Euphausia pacifica (Krill) 
(Euphausid)

Polar 40–50 20–35 Wu et al. (2008)

Studies have been also conducted on Penaeids shrimps because of 
their importance in aquaculture production worldwide. Each shrimp species has 
its own optimum temperature range in terms of maximum yield during culture.
Trypsin from the tropical penaeid shrimp Litopenaeus vannamei is stable up to 
60°C, with a residual activity of 95%–99% after 15 min (Senphan et al. 2015). 
Chymotrypsin from L. vannamei is also thermostable, retaining more than 80% of 
activity after 60 min at 50°C (Hernandez-Cortes et al. 1997). Conversely, the pink 
shrimp Farfantepenaeus paulensis is considered to be suited for culture in sub-
tropical and temperate areas, and its trypsin activity is drastically reduced after 
15 min at 45oC (Buarque et al. 2009). Chymotrypsin activity in this shrimp is also 
affected at 55°C (Buarque et al. 2009). A few other examples are shown in Table 
1 with focus on trypsin enzymes. The high thermal stability of digestive proteases 
from tropical crustaceans would represent an advantage over their cold-adapted 
or temperate counterparts, as debridement and wound healing proceed better at 
body temperature in general. It is known that when the temperature of a wound 
falls below body temperature, healing can be significantly delayed. In fact, some 
authors have found that wound bed temperatures immediately drop below 33°C 
after dressing removal, which is the minimal temperature threshold for normal 
wound healing (McGuiness et al. 2004). 

On the other hand, tropical lobster (P. argus) trypsins are fairly resistant 
to auto-proteolysis (Perera et al. 2008). Auto-proteolytic stability is a feature 
shared by different crustaceans from both warm and cold environments (Sainz 
& Córdova-Murueta 2009; Hehemann et al. 2008). In shrimps, active trypsin can 

Table 1: (continued)
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be recovered from feces (Córdova-Murueta et al. 2003) and this is likely to be 
true in other crustaceans. The use of proteases that are both thermostable and 
resistant to proteolysis in debridement and related treatments is advisable in terms 
of prolonged therapeutic effects and the possibility of decreasing the frequency of 
dressing changes due to wound temperature stability considerations (McGuiness 
et al. 2004).

Another issue related with the use of proteases in debridement and similar 
applications is the occurrence of protease inhibitors in the intended place of action. 
In the cold-adapted hermit crab P. bernhardus, soybean trypsin inhibitor (SBTI) 
suppresses the activity to about 5%, whereas in the tropical hermit crabs C. striolatus 
only to 30% (Dittrich 1992). However, differences in the susceptibility to inhibitors 
between tropical versus temperate crustacean proteases are not clear (Perera et 
al. 2015). Inhibitor affinity is highly dependent on the structural feature of enzymes. 
Three-dimensional homology models developed for trypsins from the lobster  
P. argus anticipated structural differences among the iso-enzymes (Perera et al. 
2010; 2015) and with trypsin from crayfish (Fodor et al. 2005) in important regions 
for inhibitor binding (Fodor et al. 2005; Molnár et al. 2013; Díaz-Mendoza et al. 
2005). Indeed, the trypsins from P. argus differ in their susceptibility to SBTI, with 
inhibition ranging from 92% to 100% when the inhibitor was tested at a concentration 
similar to that of Human alpha-1 antitrypsin in human plasma (Perera et al. 2012). 

It is known that alpha-1-antitrypsin is degraded and non-functional in 
chronic wounds but intact and functional in acute wounds, and that the inhibitor 
protects fibronectin (key component of the provisional matrix in skin wounds) from 
degradation by wound fluid enzymes (Rao et al. 1995) and improves healing (Rao 
et al. 1995; Cathomas et al. 2015). In fact, a treatment has been developed that 
uses alpha-1-antitrypsin for the preparation of a wound dressing composition for the 
treatment of chronic wounds (Grady et al. 2003). Also, it is known that non-healing 
leg ulcers have persistently elevated levels of proteases that prevent healing, 
which degrade growth factors and disrupt the balance between tissue breakdown 
and repair (McCarty & Percival 2013). For example, matrix metalloproteinase 
(MMP) activity was observed to be 30-fold higher in chronic wounds than in acute 
wounds (Trengove et al. 1999). Indeed, high levels of MMP activity and low levels 
of MMP inhibitor impair wound healing in chronic pressure ulcers (Ladwig et 
al. 2002). Similar results were reported for elastase activity (Yager et al. 1997). 
Accordingly, a protease-modulating matrix treatment, which removes proteases 
from the wound fluid, has been evaluated on venous leg ulcers, although its value 
is still unclear (Westby et al. 2016). Altogether, these results suggest that the 
effects of crustacean proteases should be different in chronic and acute wounds, 
or at different stages of healing, and this merits further examination. The ability 
of digestive proteases from tropical crustaceans to digest human fibronectin 
and growth factors also deserve investigation as part of the evaluation of their 
biomedical potential in wound healing.

To the best of our knowledge, no digestive protease from tropical 
crustaceans has been evaluated for debridement and wound healing despite the 
fact that chymotrypsin from the tropical shrimp L. vannamei is highly homologous 
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(77%) to crab collagenase (Sellos & Van Wormhoudt 1992). Type Ib brachyurins 
(crustacean chymotrypsins) share the specificity of type Ia brachyurins, but with 
a drastic reduction of trypsin activity. Also, collagenolytic serine proteases from 
L. vannamei are able to digest native porcine type I collagen (Burgos-Hernández 
et al. 2005) as reported for chymotrypsin from another shrimp species, Penaeus 
californiensis (Navarrete-del-Toro et al. 2015). Trypsins from the warm water 
shrimp Penaeus monodon also have collagenolytic activity in addition to the typical 
specificity of trypsin (Lu et al. 1990), although a further study suggested that this 
may occur by activation of procollagenase in the native collagen (Chen et al. 
1991). Also, one trypsin-like protease from P. argus has amino acid substitutions 
in the vicinity of the active site that may impair the access of bulky residues to 
the S1 site and make the pocket more hydrophobic, which probably confers 
elastase-like activity to this enzyme (Perera et al. 2010). In addition, as prolonged 
inflammation characterises chronic wounds, and trypsin from fish are able to 
degrade inflammatory cytokines (Gudmundsdóttir et al. 2013), it is plausible that 
trypsins from tropical crustaceans may have a similar anti-inflammatory effects. 

Altogether, these results indicate that we are far from understanding the 
true potential for biomedical applications of proteases from tropical crustaceans. In 
this regard, the identification of potentially useful enzymes according to the thermal 
habitat and feeding behaviour of the source may direct the discovery of enzymes 
with desired specificities and physical and chemical properties. For instance, 
digestive enzymes of tropical crustaceans cleaner organisms (and fish) that feed 
on dead skin of other fish in cleaning stations (Floeter et al. 2007) would be worthy 
to examine, given their preference for skin proteins as substrates. Examples 
of these organisms include cleaner shrimps (e.g. Lysmata spp., Periclimenes 
spp., Stenopus spp.) and fishes such as wrasses and gobies, but global cleaner 
diversity was recently estimated to be 208 fish species from 36 families and 106 
genera, and 51 shrimp species from six families and 11 genera (Vaughan et al. 
2017). Although not naturally feeding on skin, the use in spa skin treatments of fish 
such as the toothless Garra rufa, which feed on dead skin tissue under conditions 
of feed scarcity, is interesting (Schets et al. 2015). These organisms would be 
sources of enzymes with different biomedical applications and in particular with 
debridement and/or wound healing properties. 

CONCLUSION AND OPEN ISSUES

Marine organisms contain a great variety of digestive enzymes that have evolved 
to fulfill their wide variation in feeding habitats, natural substrates in feed, and 
environmental conditions; thus, they have accumulated millions of years of sequence 
evolution and structural refinements to achieve this functionality. Unfortunately, few 
genomic resources are available for marine crustaceans, hindering the screening 
of enzymes for biomedical application. However, the examination of potentially 
useful enzymes according to feeding behaviour and thermal habitat of the source 
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may direct the discovery of enzymes with desired specificities and physical and 
chemical properties. This pathway is far from being fully exploited. 

The thermal instability of cold-adapted enzymes provides benefits for the 
food industry because they can be selectively inactivated by mild heat input, which 
results in the protection of the food being processed (Klomklao 2008; Kuddus 
2018). However, this feature remains a drawback for their use in debridement and 
similar applications. Trypsin and other proteases from tropical crustaceans may 
have similar specificities to those exhibited by proteases from cold-adapted fish 
and crustaceans for which wound healing properties have been demonstrated. 
Moreover, tropical crustaceans have more thermally resistant proteases, and also 
exhibit autoproteolytic stability; thus, they may have advantages for applications 
such as debridement and other topical treatments. Also, there are possibilities 
to extract these enzymes in an environmentally friendly way from the many tons 
of fishery and aquaculture wastes from both fish and crustaceans. However, in 
the case of crustaceans, the extraction and applications of chitin, chitosan, and 
their derivatives in pharmaceuticals and biomedicines have received most of the 
attention (Nguyen et al. 2017) up to now. There is a potential for the biomedical 
use of proteases and other enzymes from tropical crustaceans, but most studies 
have been focused in cold-adapted and temperate species.
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