High Prevalence Fluke Infection at Four Cattle Farms Located in Kuala Terengganu, Malaysia

Khadijah Saad*, Mohammad Faiz M, Rita Nadarasan, Mursyidah A K and Quaza Nizamuddin Hassan

School of Food Science and Technology, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu, Malaysia
School of Marine and Environmental Science, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu, Malaysia
Kementerian Pertanian dan Industri Asas Tani Malaysia, Jabatan Perkhidmatan Veterinar, Wisma Tani, Presint 4, Putrajaya, Malaysia

Publication date: 26 December 2019
To cite this article: Khadijah Saad, Mohammad Faiz M, Rita Nadarasan, Mursyidah A K, and Quaza Nizamuddin Hassan. (2019). High prevalence fluke infection at four cattle farms located in Kuala Terengganu, Malaysia. Tropical Life Sciences Research 30(3): 59–68. https://doi.org/10.21315/tlsr2019.30.3.4
To link to this article: https://doi.org/10.21315/tlsr2019.30.3.4

Abstract: A survey was conducted to determine the presence of parasitic worm infection in cattle at four farms located in Kampung Surau Haji Daud, Kampung Kubang Jela, Kampung Gemuruh and Kampung Peradong, Kuala Terengganu. Thirty-three faecal samples and blood samples were obtained from each cattle involved in this survey. Faecal samples were subjected to sedimentation method, modified McMaster method and faecal culture to detect trematode eggs, nematode eggs, and to identify the third stage of larvae. Blood samples were subjected to Packed Cell Volume (PCV) method to determine if the cattle are anaemic.

Kata kunci: Paramphistomum, Fasciola, Lembu, Malaysia

© Penerbit Universiti Sains Malaysia, 2019. This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).
normal or dehydrated. Result indicated that out of 33 cattle examined 17% of the cattle were positive for liver fluke, 67% were positive for stomach fluke and 42% were positive for nematode infection. PCV value indicated that all the cattle examined are not anaemic or dehydrated. The results obtained showed that trematode and nematode infections are common problem in all the four farms. The results were submitted to Department of Veterinary Services to plan further action and treatment.

Keywords: Paramphistomum, Fasciola, Cattle, Malaysia

INTRODUCTION

Parasites infection is one of the most important causes of the production losses of meat and milk in most cattle-producing countries of the world (Chiu et al. 2014). The economic impact of gastrointestinal parasite infection results in mortality losses and retarded in growth and production of food (Rajakaruna & Warnakulasooriya 2011). Effects on animal productivity are common following parasite infection, affecting weight gain and milk production. Clinical effects following parasite infections are anaemia, oedema and diarrhoea (Bowman 2014).

There were 90,480 cattle recorded in Terengganu in 2014 (Department of Veterinary Services 2017). Parasitic infection may affect the health and productivity of cattle which eventually leads to considerable economic losses. Several studies (Khadijah et al. 2015; 2017; Rita et al. 2017) on parasitic infection in cattle have been carried out in Terengganu, Malaysia. This survey was conducted with the aim to determine the current prevalence of parasitic worm infection in Kuala Terengganu, specifically stomach fluke and liver fluke infection, in order to add more information on the current status of parasitic infection of cattle in Kuala Terengganu.

MATERIALS AND METHODS

Farms Location and Information

The survey was performed at four cattle farms in Kuala Terengganu, namely Kampung Surau Hj Daud (Farm A), Kampung Kubang Jela (Farm B), Kampung Gemuruh (Farm C) and Kampung Peradong (Farm D), Kuala Terengganu (Fig. 1). Animals at all the farms were allowed to graze in the morning until late afternoon in open pastures. For Farm D, the animals were also allowed to graze under rubber trees.
Animals

Thirty-three cattle were selected in this survey and the breed involved was Kedah-Kelantan. The cattle were aged between 1.5 to 5 years old and at each farm, at least 30% of the cattle were randomly sampled.

Sample Collections

Faeces

Faeces were collected individually from the rectum of the cattle following the guidelines by Ministry of Agriculture, Fisheries and Food (1986). These faecal samples were brought back to the laboratory and were kept at 4°C until processing for different tests. The samples were subjected to tests for trematode egg count using sedimentation method (Ministry of Agriculture, Fisheries and Food 1986) nematode worm egg count using McMaster method (Ministry of Agriculture, Fisheries and Food 1986) and faecal culture (Ministry of Agriculture, Fisheries and Food 1986) for third stage larvae identification of nematodes (Ministry of Agriculture, Fisheries and Food 1986).

Blood

Blood samples were withdrawn from the cattle (Kerr 2002) either from the tail vein or the jugular vein using needles sized 18 G into 3 ml blood tubes with Ethylene-diamine-tetraacetic acid (EDTA) anticoagulant (Vacutest Kima brand, Italy). The
whole blood was subjected to the Packed Cell Volume method (Rosenberger et al. 1979) to determine the proportion of erythrocytes in blood.

Examination of Parasites and Packed Cell Volume (PCV)

Trematodes

Sedimentation method (Ministry of Agriculture, Fisheries and Food 1986) was conducted to determine the trematode egg count in faecal samples. The number of eggs observed in the sediment was divided by 5 to get the value of eggs per gram faeces.

Nematodes

Modified McMaster Method was performed for the estimation of nematode eggs in 1 g of faeces according to Ministry of Agriculture, Fisheries and Food (1986). The number of eggs observed was multiplied by 100 to get the value of eggs per gram faeces.

Faecal culture method was conducted to obtain the third stage larvae (L₃) from faecal samples. The L₃ was identified based on the identification keys provided by Ministry of Agriculture, Fisheries and Food (1986).

Packed Cell Volume (PCV)

PCV was conducted according to Rosenberger et al. (1979). The PCV values obtained were recorded and then differentiated with the normal blood values of cattle in order to determine if they were either anaemic, normal or dehydrated.

Statistical Analysis

Normality test was conducted in order to know the distribution of data (number of worm egg). The data was not normally distributed. Thus, Kruskal-Wallis test was conducted to compare the WEC (for nematodes and trematodes) between four different farms. Chi-square test was performed to differentiate the frequency of third stage larvae present at the farms. Statistical analyses were performed using SPSS version 22 (IBM Corporation, USA).
RESULTS

Prevalence of Trematode Infection

From 33 samples, 6 (18%) were found positive for liver flukes and 27 samples (81%) were found positive for stomach fluke.

Fasciola and Paramphistomum worm egg counts do not differ across the four farms, $\chi^2(3, \, N = 33) = 1.269, \, p > 0.05$ and $\chi^2(3, \, N = 33) = 4.950, \, p > 0.05$ respectively (Table 1).

Table 1: Number of egg count (mean ± standard deviation) for liver fluke (*Fasciola* sp.) eggs and stomach fluke eggs (*Paramphistomum* sp.) in cattle at four farms in Kuala Terengganu.

<table>
<thead>
<tr>
<th>Farm location</th>
<th>Number of animal</th>
<th>Egg count (e.p.g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fasciola sp.</td>
</tr>
<tr>
<td>Kampung Surau Hj Daud</td>
<td>9</td>
<td>22.2 ± 44.1</td>
</tr>
<tr>
<td>Kampung Kubang Jela</td>
<td>9</td>
<td>22.2 ± 44.1</td>
</tr>
<tr>
<td>Kampung Gemuruh</td>
<td>10</td>
<td>80 ± 168.7</td>
</tr>
<tr>
<td>Kampung Peradong</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Kruskal-Wallis</td>
<td></td>
<td>1.269</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.737</td>
</tr>
</tbody>
</table>

Prevalence of Nematode Infection

The nematode egg count for all four farms ranged between 0–1000 e.p.g. The highest nematode egg count was recorded in Kampung Kubang Jela with 1000 e.p.g while the rest of the farms were recorded with lowest nematode egg count of 0 e.p.g. There was no significant different of nematode egg count distribution between the four farms, $\chi^2(3, \, N = 33) = 6.782, \, p > 0.05$ (Table 2).

Table 2: Mean worm egg count (mean ± standard deviation) of nematode eggs in cattle at four different farms in Kuala Terengganu.

<table>
<thead>
<tr>
<th>Farm location</th>
<th>Number of animals</th>
<th>Mean worm egg count (e.p.g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kampung Surau Hj Daud</td>
<td>9</td>
<td>100 ± 100.0</td>
</tr>
<tr>
<td>Kampung Kubang Jela</td>
<td>9</td>
<td>275 ± 369.9</td>
</tr>
<tr>
<td>Kampung Gemuruh</td>
<td>10</td>
<td>20 ± 42.0</td>
</tr>
<tr>
<td>Kampung Peradong</td>
<td>5</td>
<td>100 ± 141.4</td>
</tr>
<tr>
<td>Kruskal-Wallis</td>
<td></td>
<td>6.782</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.079</td>
</tr>
</tbody>
</table>
Third Stage Larvae (L₃) Identification

The most dominant nematode recorded was *Haemonchus* spp., followed by *Oesophagostomum* sp. There was no significant difference between the numbers of *Haemonchus* spp. on the four farms \(\chi^2 (3, N = 393) = 0.374, p > 0.05 \) (Table 3).

Table 3: The percentage of *Haemonchus* and *Oesophagostomum* L₃ in cattle at four different farms in Kuala Terengganu.

<table>
<thead>
<tr>
<th>Farm location</th>
<th>Haemonchus spp.</th>
<th>Oesophagostomum sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kampung Surau Hj Daud</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Kampung Kubang Jela</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Kampung Gemuruh</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>Kampung Peradong</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Chi-square</td>
<td>0.374</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.946</td>
<td></td>
</tr>
</tbody>
</table>

Packed Cell Volume

The PCV recorded ranged between 24%–48% for all the cattle sampled.

DISCUSSION

This present survey recorded high prevalence of trematode and low prevalence of nematode infection in cattle at four farms in Kuala Terengganu, Malaysia. All four farms reported the presence of stomach fluke while three farms reported the presence of liver fluke.

The prevalence of stomach fluke infection in this current survey was high (81%) compared to liver fluke infection. It is also reported to be higher than the findings of Khadijah *et al.* (2017) and Rita *et al.* (2017) which recorded the percentage of stomach fluke infection in cattle Terengganu, Malaysia as 15% and 59% respectively. The report of stomach fluke incidences coincides with other reports which suggested that stomach fluke is highly reported in areas with subtropical and tropical climate, such as in Asia, Africa and Russia (Horak 1971; Gupta *et al.* 1978). However, studies on stomach fluke infection in Terengganu and Malaysia are very limited. Therefore, more studies on prevalence of stomach fluke infection in Malaysia and the epidemiology are suggested, due to the fact that this parasite was reported to cause production losses in cattle and buffalo (Saleha 1991).
The prevalence of liver fluke infection in this present survey was lower (18%) than the those reported by Khadijah et al. (2015; 2017) and Rita et al. (2017) where the prevalence were recorded as 94.6% and 67.8%, respectively. However, the infection of liver flukes in this present survey was supported by previous researchers who reported that liver fluke infection affected cattle (Saleha 1991; Rajamanickam et al. 1996) and buffaloes in Malaysia (Khadijah et al. 2017; Rosilawati & Saipul Bahari 2017). Similar to stomach fluke studies, studies on liver fluke infection in Terengganu and Malaysia are very limited, with very few literatures published after the findings of Rajamanickam et al. (1996). Therefore, more studies on liver fluke infection in Malaysia and the epidemiology are suggested, due to the fact that this parasite was reported to cause production losses in cattle, sheep and goats (Saleha 1991).

Haemonchus spp. was found to be highly prevalent followed by *Oesophagostomum* sp. This is supported by Waruiru et al. (2001) who reported that *Haemonchus* spp. were recorded as the predominant species among the trichostrongylids in cattle.

Despite having *Haemonchus* spp. in abomasum and infected with flukes, percentage of PCV in all the animals were ranged between 24%–48%, indicating normal range as reported by Rajamanickam et al. (1987). This finding was not expected as the animals were infected by blood-sucking parasites, and PCV values should be significantly lower as reported by Rajamanickam et al. (1987). PCV might not be affected by *Haemonchus* spp. infection as the infection was low, with mean worm egg counts were 100 and 275 e.p.g. Similar to this, mean Fasciola egg counts were 22 and 80 per gram, indicating low infection that might not be affecting PCV values. On the other hand, it was expected that infection by Paramphistomum with mean worm egg count ranged between 244–2110 e.p.g. will affect the PCV value. However, this is not the case in this current survey. It was reported that the immature stages suck blood and are responsible for anaemia in cattle (Diaz et al. 2006) and it is probable that in this current survey the immature stages are low when compared to adults which produce eggs.

It is suggested that in future studies, observation and sampling of freshwater snails could be conducted to determine the source of fluke infections as in this current study the snails were not observed. Information on the availability of the snails as source of infection will help farmers to manage and control fluke infection.

CONCLUSION

Present survey recorded high prevalence of trematode infection and low prevalence of nematode infection. This survey revealed that the animals were infected with liver fluke, stomach fluke, *Haemonchus* spp. and *Oesophagostomum* sp. Although, the PCV value showed that all of the cattle sampled were in healthy condition, regular monitoring by Department of Veterinary Services is required. Similar survey with wider coverage of the farms in Terengganu and other states should be conducted.
to provide more information on trematode and nematode infection that will assist farmers and Department of Veterinary Services to improve animal's health.

ACKNOWLEDGEMENTS

The authors would like to express gratitude to the officers of Department of Veterinary Services Terengganu for the assistance during the sampling. This study was funded by Ministry of Education Malaysia under the Fundamental Research Grant Scheme (FRGS/2/2014/SKK05/UMT/03/1).

REFERENCES

