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Abstrak: Semenjak sedekad yang lalu, bidang biologi sel stem menjadi tarikan utama 
dalam kalangan penyelidik kerana potensi terapeutiknya yang luas. Sel stem adalah satu 
kelas sel tak terbeza yang berupaya membeza kepada sel jenis khusus. Sel stem boleh 
dikelaskan kepada dua jenis iaitu sel-sel stem dewasa (tisu dewasa) dan sel-sel stem 
embrio (embrio yang terbentuk semasa fasa blastosis dalam pembentukan embrio). 
Artikel ini akan membincangkan mengenai dua jenis sel stem mesenkim dewasa; sel stem 
gigi dan sel stem amnion dari segi keturunan pembezaan, bilangan pemindahan dan 
kajian model haiwan. Sel stem amnion mempunyai bilangan keturunan pembezaan yang 
lebih tinggi berbanding sel stem gigi. Sebaliknya, peringkat bilangan sub-kultur sel stem 
gigi adalah lebih banyak berbanding sel stem amnion. Untuk pertumbuhan semula tisu, 
sel stem amnion mengambil masa yang paling singkat bagi penjanaan semula berbanding 
sel stem gigi, berdasarkan kajian model haiwan. 
 
Kata kunci: Sel Stem Gigi, Sel Stem Amnion, Keturunan Pembezaan, Peringkat Bilangan 
Sub-Kultur  
 
Abstract: In the past decade, the field of stem cell biology is of major interest among 
researchers due to its broad therapeutic potential. Stem cells are a class of 
undifferentiated cells that are able to differentiate into specialised cell types. Stem cells 
can be classified into two main types: adult stem cells (adult tissues) and embryonic stem 
cells (embryos formed during the blastocyst phase of embryological development). This 
review will discuss two types of adult mesenchymal stem cells, dental stem cells and 
amniotic stem cells, with respect to their differentiation lineages, passage numbers and 
animal model studies. Amniotic stem cells have a greater number of differentiation 
lineages than dental stem cells. On the contrary, dental stem cells showed the highest 
number of passages compared to amniotic stem cells. For tissue regeneration based on 
animal studies, amniotic stem cells showed the shortest time to regenerate in comparison 
with dental stem cells. 
 
Keywords: Dental Stem Cells, Amniotic Stem Cells, Differentiation Lineages, Number of 
Passages 
 
 
INTRODUCTION 
 
Stem cells (SCs) are one of the recent scientific findings of the 21st generation 
and have led to some parts of the fundamental knowledge of biological cells 
                                                 
∗Corresponding author: azlinakb@usm.my 



Nurul Hidayat Yusoff et al. 

22 

being rewritten. Embryonic SCs are derived from embryos, while adult, or 
somatic SCs, come from somatic cells. Both types are generally characterised by 
their plasticity. However, the pluripotentiality of embryonic SCs surpasses adult 
SCs. Although embryonic SCs seem to be the gold standard in terms of plasticity, 
ethical issues have capped it from being used widely, while adult SCs are 
multipotent SCs with less plasticity (Raff 2003) but generally raise no ethical 
issues. Adult SCs derived from bone marrow have been extensively studied 
(Woodbury et al. 2000; Terada et al. 2002). The cells are capable of 
differentiating into haematopoietic lineages (Huang & Terstappen 1992) and non-
haematopoietic lineages (Le Blanc et al. 2003). Another type of multipotent SC is 
mesenchymal SCs (MSCs). However, the sources of these SCs pose some 
limitations because the procedure for obtaining adult SCs is usually invasive, 
painful and occasionally associated with morbidity (Baksh et al. 2007). In 
addition, sometimes only a handful of specialised SCs can be isolated (Pittenger 
et al. 1999; Sakaguchi et al. 2005). Taking all those factors into consideration, 
adult SCs remain the favourite SC because of ethics and the growing list of SC 
manipulation techniques, especially in the field of tissue engineering (Tuan et al. 
2003; Caplan 2007). Thus, identifying alternative sources of adult SCs remains 
an important issue.  

This review discusses two types of adult SCs: namely, dental and 
amniotic SCs. One of the best sources of SCs is dental SCs. Dental SCs are 
suggested to be remarkably resilient (Zhang et al. 2006) and have the capacity to 
differentiate into many specific cell types (Gronthos et al. 2000). In addition, 
dental SCs have a high number of passages before losing their stem cell markers 
(Kerkis et al. 2007), compared to SCs from the human amniotic membrane 
(HAM) (Miki et al. 2005). Thus, to understand these two types of SCs, the 
abilities of these two cell types must be understood, and these topics form the 
basis of the below sections. The induced pluripotent stem (iPS) cell, a 
synthetically derived SC that is recently becoming a popular source of SCs, is out 
of the scope of this review article. 
 
 
CHARACTERISTICS OF MESENCHYMAL STEM CELLS 
 
Several features of MSCs include phenotypic, morphological, cell lineage and 
stem cell marker characteristics. The plastic adherence nature of MSCs to tissue 
culture flasks constitutes its phenotypic characteristic (Horwitz et al. 2005). MSCs 
have a fibroblastic-like cell morphology (Väänänen 2005). SCs are considered 
mesenchymal if they can differentiate into osteogenic, chondrogenic and 
adipogenic lineages (Pittenger et al. 1999; Toda et al. 2007). However, recent 
studies showed that MSCs can also differentiate into myogenic and neurogenic 
lineages (Alviano et al. 2007; Portmann-Lanz et al. 2006). In 2006, the 
International Society for Cellular Therapy (ISCT) proposed a cell surface marker 
panel for the minimal identification of human MSCs (Takata et al. 2004). Under 
that recommendation, MSCs should be positive for CD73, CD90, and CD105 and 
lack typical hematopoietic antigens, which are CD45, CD34, CD14 (Pittenger              
et al. 1999), CD11b or CD19 or CD79α, and HLA-DR (Takata et al. 2004). Other 
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expressed cell surface markers are CD44, CD166 (Sánchez et al. 2011), CD29 
(Kern et al. 2006), and CD271 (Bühring et al. 2007).  
 
Dental Stem Cells 
Adult MSCs come from many sources, including the tooth (Fig. 1) and HAM (Fig. 
2). Dental SCs can be isolated from a few locations of the tooth. The SCs 
isolated from the permanent third molars of adult human dental pulp are termed 
dental pulp SCs (DPSCs) (Shi & Gronthos 2003), while SCs isolated from the 
pulp of deciduous teeth are known as SCs from human exfoliated deciduous 
teeth (SHED) (Miura et al. 2003). The SCs from the apical papilla (SCAPs) are 
the SCs isolated from the tooth root apex (Sonoyama et al. 2008), while 
periodontal ligament (PDL) SCs (PDLSCs) are those SCs from the PDL 
(Demarco et al. 2011).  
 
 

 
 
Figure 1: Diagram showing sources of MSCs from the tooth.  
Note: DPSCs: dental pulp SCs; SHED: SC from human exfoliated deciduous teeth; PDLSCs: periodontal ligament 
SCs; SCAP: SC from apical papilla 
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Figure 2: Diagram showing sources of MSCs from the human amniotic membrane.  
Note: HAECs: human amniotic epithelial SCs; HAMMSCs: human amniotic mesenchymal SCs 
 
Amniotic Stem Cells 
Two types of SCs can be isolated from HAM: human amniotic epithelial SCs 
(HAESCs) (Alonso & Fuchs 2003) and human amniotic membrane mesenchymal 
SCs (HAMMSCs) (Alviano et al. 2007). HAECs are cuboidal to columnar cells 
that form a monolayer lining on the membrane and are in direct contact with the 
amniotic fluid (Caruso et al. 2012). HAECs, which arise from the embryonic 
epiblast, are amongst the first cells to differentiate from the conceptus (Parolini  
et al. 2008). The conceptus includes all structures that develop from the zygote; it 
comprises the embryo as well as the embryonic part of the placenta and its 
associated membranes: the amnion and chorion (Gitlin et al. 1972; Jauniaux               
et al. 2005). In contrast, HAMMSCs are dispersed in an extracellular matrix 
largely composed of collagen and laminin and are derived from extraembryonic 
mesoderm (Boury-Jamot et al. 2006).  
 
 
CULTURE CHARACTERISTIC COMPARISONS 
 
Differentiation Lineages  
Dental and amniotic SCs differ in terms of their differentiation lineages; Zhang           
et al. (2006) found that DPSCs can differentiate into 5 lineages: osteogenic, 
adipogenic, chondrogenic, myogenic and neurogenic. SHED can differentiate into 
6 lineages: dentinogenic (Minguell & Erices 2006), chondrogenic, myogenic 
(Sakaguchi et al. 2005), adipogenic, neurogenic and osteogenic (Miura et al. 
2003). Some studies found that SCAPs differentiate into 3 lineages, 
dentinogenic, adipogenic (Caplan 2007), and neurogenic (Sonoyama et al. 
2008), while PDLSCs differentiate into 4 lineages, osteo/cementogenic, 
adipogenic (Le Blanc et al. 2003), chondrogenic (Seo et al. 2004), and 
neurogenic (Huang et al. 2009). Among all the dental SCs, SHED showed the 
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highest differentiation capacity because they can differentiate into 6 lineages.  As 
for amniotic SCs, HAECs can differentiate into 9 lineages: adipogenic, 
chondrogenic, lung (Díaz-Prado et al. 2011), myogenic, osteogenic, 
cardiomyogenic (Ilancheran et al. 2007), neural, hepatic, and pancreatic (Miki            
et al. 2005). On the other hand, HAMMSCs can differentiate into 8 lineages: 
adipogenic, chondrogenic, neurogenic, angiogenic (Alviano et al. 2007), 
osteogenic and myogenic (Portmann-Lanz et al. 2006), hepatic (Tamagawa et al. 
2007), and cardiomyogenic (Zhao et al. 2005). Based on the above research, 
HAECs differentiate into more lineages than HAMMSCs, and amniotic SCs have 
the maximum number of differentiation lineages based on the differentiation 
potential of HAECs. 
 
Number of Passages 
In research, the number of passages is one of the important determinations for 
SC studies. Dental SCs showed a higher number of passages compared to 
amniotic SCs. DPSCs have been passaged for up to 25 passages (Zhang et al. 
2006; Kerkis et al. 2007). Sakaguchi et al. (2005) stated that the maximum 
passage number for SHED was up to passage 5 based on their research. 
Minguell and Erices (2006) reported that the highest passage number for SCAPs 
was passage 10, and the highest passage number for PDLSCs was passage 4 
(Le Blanc et al. 2003). Among the dental SCs, DPSCs showed the highest 
passage number compared to SHED, SCAPs and PDLSCs. HAECs and 
HAMMSCs can also be compared in terms of passage numbers. Miki et al. 
(2005) found that HAECs can be maintained up to passage 8. A study (Bilic et al. 
2008) postulated that HAMMSC proliferation nearly stopped beyond passage 5, 
while another study (Parolini et al. 2008) reported that HAMMSCs proliferate for 2 
to 6 passages before proliferation ceases. Thus, dental SCs showed the highest 
passage numbers. 
 
Animal Model Studies 
Dental SCs and amniotic SCs also can be compared based on studies conducted 
on animal models. Dental SCs, DPSCs, SHED, SCAPs and PDLSCs have been 
used for pulp dentin/tissue engineering and regeneration in animal studies. 
DPSCs and SCAPs have been used to regenerate dentin (Sonoyama et al. 2008; 
Alongi et al. 2010). Similar to DPSCs (Alongi et al. 2010), SCAPs also required 8 
weeks to regenerate dentin in the presence of hydroxyapatite and tricalcium 
phosphate (HA/TCP) (Sonoyama et al. 2008). Another study employed SHED to 
observe the regeneration of pulp (Cordeiro et al. 2008). After only 2–4 weeks, 
SHED became pulp. Seo et al. (2004) used PDLSCs for periodontal repair. The 
PDL is similar to tendon in terms of its dense collagen fibre structure and its 
ability to absorb mechanical stress during normal physiological activity (Berkovitz 
1990). Among dental SCs, SHED exhibited the shortest period for tissue 
regeneration compared to DPSCs, SCAPs and PDLSCs (Seo et al. 2004; 
Cordeiro et al. 2008; Sonoyama et al. 2008; Alongi et al. 2010). Some studies 
(Manuelpillai et al. 2010; Zhang et al. 2011) used amniotic SCs, HAMMSCs and 
HAECs to treat liver fibrosis using immunocompetent mice. HAECs only required 
2 weeks to decrease fibrosis formation and the progression of toxic carbon 
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tetrachloride-induced cirrhosis; the same processes required 4 weeks for 
HAMMSCs. When comparing HAECs and HAMMSCs, HAECs showed the 
shortest time to regenerate tissues in liver fibrosis (Manuelpillai et al. 2010; 
Zhang et al. 2011). Both types of SCs have been successfully used in animal 
models but for different purposes. However, amniotic SCs showed the shortest 
time for tissue regeneration compared to dental SCs (Table 1).    
 
Table 1: Comparison of culture characteristics of dental SCs and amniotic SCs.  
 

 Dental SCs Amniotic SCs 

Differentiation lineages 

6 lineages 9 lineages 

dentinogenic, chondrogenic, 
myogenic, adipogenic, 

neurogenic and osteogenic 

adipogenic, chondrogenic, lung, 
myogenic, osteogenic, 

cardiomyogenic, neural, hepatic, 
and pancreatic 

Maximum number of 
passages 25 9 

Animal model studies  Dentin and pulp regeneration, 
periodontal repair Liver fibrosis 

 
 
CONCLUSION 
 
Despite the lower passage number of amniotic SCs, they hold promise in tissue 
regeneration due to their greater number of differentiation lineages and shorter 
regeneration capacity compared with dental stem cells. The high number of 
differentiation lineages of amniotic SCs suggests their high multipotentiality.  
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